Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Pharmaceuticals (Basel) ; 16(5)2023 May 09.
Article in English | MEDLINE | ID: covidwho-20242205

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 caused the global COVID-19 pandemic and public health crisis, and it led to the rapid development of COVID-19 vaccines, which can cause rare and typically mild hypersensitivity reactions (HRs). Delayed HRs to COVID-19 vaccines have been reported, and the excipients polyethylene glycol (PEG)2000 and polysorbate 80 (P80) are the suspected culprits. Skin patch tests do not help in diagnosing delayed reactions. We aimed to perform lymphocyte transformation tests (LTT) with PEG2000 and P80 in 23 patients with suspected delayed HRs. Neurological reactions (n = 10) and myopericarditis reactions (n = 6) were the most frequent complications. Seventy-eight percent (18/23) of the study patients were admitted to a hospital ward, and the median time to discharge was 5.5 (IQR, 3-8) days. Some 73.9% of the patients returned to baseline condition after 25 (IQR, 3-80) days. LTT was positive in 8/23 patients (5/10 neurological reactions, 2/4 hepatitis reactions and 1/2 rheumatologic reactions). All myopericarditis cases had a negative LTT. These preliminary results indicate that LTT with PEGs and polysorbates is a useful tool for identifying excipients as causal agents in HRs to COVID-19 vaccines and can play an important role in risk stratification in patients with HRs.

2.
Front Immunol ; 14: 1136308, 2023.
Article in English | MEDLINE | ID: covidwho-2322722

ABSTRACT

Introduction: Inborn errors of immunity (IEI) are a heterogeneous group of diseases caused by intrinsic defects of the immune system. Estimating the immune competence of immunocompromised patients for an infection risk assessment or after SARS-CoV-2 vaccination constituted a challenge. Methods: The aim of this study was to determine the humoral responses of patients with IEI through a comprehensive analysis of specific receptor-binding domain-positive (RBD+) IgG+ memory B cells (MBCs) by flow cytometry, together with routine S-specific IgG antibodies and QuantiFERON SARS-CoV-2 (T-cell response), before the vaccine and 3 weeks after a second dose. Results and discussion: We first analyzed the percentage of specific RBD+ IgG+ MBCs in healthy healthcare workers. Within the control group, there was an increase in the percentage of specific IgG+ RBD+ MBCs 21 days after the second dose, which was consistent with S-specific IgG antibodies.Thirty-one patients with IEI were included for the pre- and post-vaccination study; IgG+ RBD+ MBCs were not evaluated in 6 patients due to an absence of B cells in peripheral blood. We detected various patterns among the patients with IEI with circulating B cells (25, 81%): an adequate humoral response was observed in 12/25, consider by the detection of positive S-specific IgG antibodies and the presence of specific IgG+ RBD+ MBCs, presenting a positive T-cell response; in 4/25, very low S-specific IgG antibody counts correlated with undetectable events in the IgG+ RBD+ MBC compartment but with positive cellular response. Despite the presence of S-specific IgG antibodies, we were unable to detect a relevant percentage of IgG+ RBD+ MBCs in 5/25; however, all presented positive T-cell response. Lastly, we observed a profound failure of B and T-cell response in 3 (10%) patients with IEI, with no assessment of S-specific IgG antibodies, IgG+ RBD+ MBCs, and negative cellular response. The identification of specific IgG+ RBD+ MBCs by flow cytometry provides information on different humoral immune response outcomes in patients with IEI and aids the assessment of immune competence status after SARS-CoV-2 mRNA vaccine (BNT162b2), together with S-specific IgG antibodies and T-cell responses.


Subject(s)
COVID-19 , Memory B Cells , Humans , COVID-19 Vaccines , BNT162 Vaccine , Flow Cytometry , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Health Personnel , Immunoglobulin G
3.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2157060

ABSTRACT

Background Immune responses to vaccines against severe acute respiratory syndrome (SARS)-coronavirus (CoV)-2 are variable. In the absence of disease, youngsters are expected to better react to vaccines than adults. Nevertheless, chronic immunosuppression in transplant recipients may impair their capability to generate protection. We aim to explore immune responses after BNT162b2 SARS-CoV-2 vaccination in our cohort of young liver-transplanted patients. Methods A prospective study of adolescent liver-transplanted patients (n=33) in the long-term follow-up was performed. Immune responses after receiving Pfizer-BioNTech BNT162b2 vaccine were analyzed at two time-points: baseline and 30 days after the second dose. Humoral responses were measured by fluoroenzyme-immunoassay and T-cell responses by interferon-γ-release assay. Post-vaccine coronavirus disease (COVID-19) events were recorded by a survey. Results Pre-vaccine SARS-CoV-2-specific antibodies were undetectable in 27/32 (84.4%), negative/indeterminate in 3/32 (9.4%) and positive in 2/32 (6.3%) patients. Cellular responses at baseline were negative in 12/18 (66.6%), positive in 3/18 (16.6%) and indeterminate in 3/18 (16.6%) recipients. None of the baseline positives recalled any symptoms. Post-vaccine antibodies were detected in all patients and 92.6% showed levels >816 BAU/mL. Twenty (71.4%) recipients had positive T-cell responses. Regarding post-vaccine SARS-Cov-2 infection, 10 (30.3%) patients reported COVID-19 without hospitalization and 21 (63.6%) did not notify any infection. Negative and positive cell-response groups after vaccination showed statistically significant differences regarding COVID-19 cases (62.5% vs 22.2%, respectively;p=0.046). Conclusions Adolescents and young adults with liver transplantation responded to SARS-Cov-2 vaccine, generating both humoral and cellular responses. Recipients developing cellular responses after vaccination had a lower incidence of COVID-19.

4.
J Clin Med ; 10(19)2021 Sep 27.
Article in English | MEDLINE | ID: covidwho-1438648

ABSTRACT

Coronavirus disease 2019 (COVID-19) has a wide spectrum of clinical manifestations. An elevation of liver damage markers has been observed in numerous cases, which could be related to the empirical use of potentially hepatotoxic drugs. The aim of this study was to describe the clinical and analytical characteristics and perform a causality analysis from laboratory signals available of drug-induced liver injury (DILI) detected by a proactive pharmacovigilance program in patients hospitalised for COVID-19 at La Paz University Hospital in Madrid (Spain) from 1 March 2020 to 31 December 2020. The updated Roussel Uclaf Causality Assessment Method (RUCAM) was employed to assess DILI causality. A lymphocyte transformation test (LTT) was performed on 10 patients. Ultimately, 160 patients were included. The incidence of DILI (alanine aminotransferase >5, upper limit of normal) was 4.9%; of these, 60% had previous COVID-19 hepatitis, the stay was 8.1 days longer and 98.1% were being treated with more than 5 drugs. The most frequent mechanism was hepatocellular (57.5%), with mild severity (87.5%) and subsequent recovery (88.1%). The most commonly associated drugs were hydroxychloroquine, azithromycin, tocilizumab and ceftriaxone. The highest incidence rate of DILI per 10,000 defined daily doses (DDD) was with remdesivir (992.7/10,000 DDD). Some 80% of the LTTs performed were positive, with a RUCAM score of ≥4. The presence of DILI after COVID-19 was associated with longer hospital stays. An immune mechanism has been demonstrated in a small subset of DILI cases.

5.
Front Pharmacol ; 11: 602841, 2020.
Article in English | MEDLINE | ID: covidwho-993416

ABSTRACT

BACKGROUND: From March to April 2020, Spain was the center of the SARS-CoV-2 pandemic, particularly Madrid with approximately 30% of the cases in Spain. The aim of this study is to report the suspected serious adverse drug reactions (SADRs) in COVID-19 patients vs. non-COVID-19 patients detected by the prospective pharmacovigilance program based on automatic laboratory signals (ALSs) in the hospital (PPLSH) during that period. We also compared the results with the suspected SADRs detected during the same period for 2019. METHODS: All ALSs that reflected potential SADRs including neutropenia, pancytopenia, thrombocytopenia, anemia, eosinophilia, leukocytes in cerebrospinal fluid, hepatitis, pancreatitis, acute kidney injury, rhabdomyolysis, and hyponatremia were prospectively monitored in hospitalized patients during the study periods. We analyzed the incidence and the distribution of causative drugs for the COVID-19 patients. RESULTS: The incidence rate of SADRs detected in the COVID-19 patients was 760.63 (95% CI 707.89-816.01) per 10,000 patients, 4.75-fold higher than the SADR rate for non-COVID-19 patients (160.15 per 10,000 patients, 95% CI 137.09-186.80), and 5.84-fold higher than the SADR rate detected for the same period in 2019 (130.19 per 10,000 patients, 95% CI 109.53-154.36). The most frequently related drugs were tocilizumab (59.84%), dexketoprofen (13.93%), azithromycin (8.43%), lopinavir-ritonavir (7.35%), dexamethasone (7.62%), and chloroquine/hydroxychloroquine (6.91%). CONCLUSIONS: The incidence rate of SADRs detected by the PPSLH in patients with COVID-19 was 4.75-fold higher than that of the non-COVID-19 patients. Caution is recommended when using medications for COVID-19 patients, especially drugs that are hepatotoxic, myotoxic, and those that induce thromboembolic events.

SELECTION OF CITATIONS
SEARCH DETAIL